сорбция рдн


 Радионуклиды , поступившие в почву, не изменяют физико-химического состава почвы и с течением времени распределяются в 30-ти сантиметровом слое. В почве  радионуклиды  включаются в различные процессы, среди которых наибольшее значение имеют  сорбция  и миграция.  Радионуклиды  вступают в физико-химические реакции взаимодействия с почвенным поглощающим комплексом (ППК), усваиваются почвенными микроорганизмами, образуют нерастворимые и растворимые в почвенном растворе соли и коллоидные соединения, что сопровождается трансформацией форм их соединений, изменением миграционной подвижности и биологической доступности для корневых систем растений. Поглощение  радионуклидов  ППК определяется процессами распределения между двумя основными фазами почвы — твердой и жидкой и осуществляется за счет следующих основных взаимообратимых процессов.
1.  Сорбция   десорбция.  Сорбция  — это поглощение  радионуклидов  твердыми частицами почвы из почвенного раствора. Десорбция — это выделение или переход  радионуклидов  из частиц в почвенный раствор. Поглощение  радионуклидов  поверхностным слоем частиц называется адсорбцией.
2. Осаждение  растворение. Осаждение — это образование труднорастворимых и нерастворимых соединений  радионуклидов . Растворение — это переход радионуклидов  в почвенный раствор из соединений.
3. Коагуляция  пептизация. Коагуляция — это образование крупных коллоидных соединений в дисперсных системах. Пептизация — это распад крупных и сложных соединений на мелкие и простые.
На подвижность  радионуклидов  в почве оказывают влияние ряд таких факторов как физико-химическая характеристика  радионуклидов , время и формы нахождения в почве, свойства почвы, погодно-климатические условия, тип растительного покрова.
Среди физико-химических характеристик наибольшее влияние на поведение  радионуклидов  в почве оказывают свойства радиоактивных выпадений и равномерность распределения их в почве, степень дисперсности и растворимость выпадений, атомная масса и величина заряда иона  радионуклида , способность радионуклида  образовывать комплексные и нерастворимые соединения, а также способность  радионуклидов  к изоморфному замещению элементов в почвенных минералах.  Радионуклиды , поступившие в почву в водорастворимой форме и в составе тонкодисперсных радиоактивных частиц, активно и быстро включаются в почвенные процессы. При этом одновалентные ионы радиоцезия вступают в ионно-обменные реакции с ионами глинистых частиц почвенно-поглощающего комплекса, где прочно фиксируются, изоморфно замещая калий в кристаллических решетках. Ионы двухвалентного стронция-90 практически не участвуют в таких ионно-обменных реакциях, поэтому стронций-90 не поглощается ППК и находится в почве в подвижном состоянии.
Из свойств почвы наибольшее влияние на  сорбцию  оказывают агрохимические показатели (кислотность почвенного раствора, емкость поглощения и состав обменных катионов, содержание органического вещества), а также минералогический и гранулометрический состав почвы. Определяющую роль при взаимодействии  радионуклидов  с почвой играет поглотительная способность почвы, т.е. способность почвенных частиц поглощать ионы химических элементов из почвенного раствора и удерживать их в связанном состоянии. Гидройц К.К. выделил 5 видов поглотительной способности почв: 1) механическая поглотительная способность, т.е. механическое поглощение радиоактивных частиц порами и капиллярами почвы; 2) биологическая поглотительная способность, т.е. избирательное поглощение  радионуклидов  фауной и микроорганизмами; 3) физическая поглотительная способность, т.е. поглощение из почвенного раствора поверхностью частиц молекул воды и ионов щелочных элементов; 4) химическая поглотительная способность, т.е. образование в результате химических реакций труднорастворимых и нерастворимых в воде соединений; 5) физико-химическая или обменная поглотительная способность, т.е. способность почвенных коллоидов поглощать катионы из раствора в обмен на эквивалентное количество катионов коллоидов. Коллоиды — это сложные минеральные, органические и органоминеральные соединения. В большинстве почв преобладают минеральные коллоиды, на долю которых приходится 85–90% их общей массы. К ним относятся глинистые минералы (монтмориллонит, каолинит, галлуазит, гидрослюда, иллит, вермикулит и др.), гидрооксиды железа, алюминия, марганца, кремния и их комплексные соли. Основное свойство коллоидов — способность к поглощению веществ из раствора в виде ионов и молекул. Поглощенные ионы и молекулы могут обмениваться на другие ионы и молекулы, находящиеся в почвенном растворе, т.е. коллоиды обеспечивают поглотительную и обменную способность почв. Большая удельная поверхность и наличие двойного слоя ионов на внешней части, которые способны к эквивалентному обмену, придают коллоидам высокую реакционную активность. В зависимости от заряда ионов коллоиды разделяются на три группы: 1) отрицательно заряженные (глинистые минералы, гидрооксиды кремния и марганца, гумусовые кислоты, органоминеральные коллоиды); 2) положительно заряженные (гидрооксиды железа и алюминия); 3) амфолитоиды, которые в кислой среде имеют положительный заряд, а в щелочной – отрицательный. Отрицательный заряд глинистых минералов возникает в результате изоморфных (неэквивалентных) замещений ионов.
Обменное поглощение оказывает основное влияние на поведение  радионуклидов  в почве. Процессы обменного поглощения происходят на поверхности частиц. Обменной поглотительной способностью обладает тонкодисперсная фракция или почвенно-поглощающий комплекс. Обменное поглощение  радионуклидов подчиняется основным закономерностям ионного обмена. Характер взаимодействия  радионуклидов  с ППК можно представить схемой обменной реакции:
ППК-М + m  ППК-m + М,
где ППК – почвенно-поглощающий комплекс; М – ионы элементов ППК; m – ионы  радионуклидов .Эта реакция обратима, т.е. после поглощения катиона  радионуклида  почвенно-поглощающим комплексом он может снова вытесняться в почвенный раствор из ППК. Реакция обмена происходит до установления равновесия, которое может смещаться при изменении состава катионов почвенного раствора. Изменение концентрации ионов почвы может существенно влиять на распределение ионов  радионуклидов  в почве (например, при внесении минеральных удобрений). Однако изменение концентрации  радионуклидов  практически не влияет на распределение ионов ППК.
Фракции почв различаются размерами частиц, физическими и химическими свойствами и минералогическим составом. Выделяют три основные фракции почвы: 1) фракция мелкого песка и крупной пыли; 2) фракция средней и мелкой пыли; 3) илистая фракция. Во второй и третьей фракции, куда входят слюды, гидрослюды и минералы монтмориллонитовой и каолинитовой группы, повышенное содержание кальция, магния и калия. Гранулометрический состав определяет поглотительную способность почвы, которая зависит от дисперсности почвенных частиц. С уменьшением размера частиц почвенных фракций  сорбция  ими Сs-137 повышается. Почвы с большим содержанием высокодисперсных частиц (размером от 0,2 до 0,001 мкм) имеют высокую емкость поглощения, высокое содержание оксидов железа, алюминия, марганца, гумуса и обменных катионов Са2+, Мg2+ и К+. Сорбционная поверхность частиц увеличивается от грубых фракций к тонким, т.е. у песчаной фракции она минимальная, у илистой фракции — максимальная. Установлено, что более 90%  радионуклидов  поглощается илистой фракцией, т.е. глинами, гидрослюдами и слюдами. Почвы тяжелого гранулометрического состава обладают более высоким содержанием мелкодисперсных фракций по сравнению с почвами легкого гранулометрического состава. Поэтому поглощенные  радионуклиды  в 2-5 раз сильнее закрепляются на тяжелых почвах. Сs-137 сорбируется в 10–20 сильнее, чем Sr-90. В Республике Беларусь более 50% загрязненных земель составляют почвы легкого гранулометрического состава, где преобладают кварц и полевые шпаты, поэтому эти почвы имеют низкую емкость поглощения, низкое содержание вторичных глинистых минералов. Для этих почв характерна повышенная гидроморфность. Эти свойства обеспечивают слабую  сорбцию   радионуклидов , хорошую растворимость и высокое поступление их в растения.
 Сорбция   радионуклидов  на торфяных почвах зависит от окультуренности и степени минерализации торфа. Минерализацию оценивают по зольности почвы, т.е. по содержанию в ней оксидов железа, алюминия и кремния. Чем больше в золе SiO2, тем выше зольность. Известно, что SiO2 и алюминий входят в состав монтмориллонита, каолинита и гидрослюд, содержание которых в торфяных почвах очень низкое. Торфяно-болотные почвы имеют повышенную влажность, высокую кислотность почвенного раствора, что препятствует прочной  сорбции   радионуклидов . При высокой минерализации (зольность 70%) возрастает сорбция  и уменьшается содержание обменных и водорастворимых форм до 5–10 раз.  Сорбция   радионуклидов  на торфяно-болотных почвах в 10 раз меньше, чем на минеральных почвах. Известно, что чем больше мощность торфяного слоя, тем выше содержание водорастворимых и обменных форм  радионуклидов .Высокая  сорбция  мелкодисперсных фракций почвы связана не только с большой удельной поверхностью глинистых частиц и с их отрицательным зарядом, но и с особенностями их минералогического состава. Минеральная часть почвы составляет от 50% до 97% массы почвы. Первичные минералы представлены крупными песчаными частицами. Вторичные минералы преобладают в илистой фракции в виде глин и коллоидов. Максимальная  сорбция   радионуклидов  происходит минералами группы монтмориллонита и группы гидрослюд. Минимальная  сорбция  у минералов группы каолинита и группы слюд. Поглощение  радионуклидов из почвенного раствора минералами группы монтмориллонита составляет 92-99%, группы гидрослюд – 80-88%, группы слюд – 71-87%, группы каолинита – 40-68%, группы кальцита, кварца и полевых шпатов – 10-50%. Вторичные минералы относятся к алюмосиликатам и имеют следующие химические формы: Аl2Si4O10(ОН)2· nН2О – монтмориллонит, Аl2Si2O5(ОН)4 – каолинит, КАl2[(SiАl)4 О10](ОН)2· n Н2О – гидромусковит. Они находятся в почве в виде кристаллов от нескольких микрометров до десятых и сотых долей микрометра, благодаря чему имеют большую поверхность и высокую поглотительную способность. Монтмориллонитовые глины высокодисперсны, обладают высокой набухаемостью, липкостью и вязкостью. В дерново-подзолистых почвах и черноземах, сформированных на суглинках, преобладают минералы монтмориллонитовой группы. Различие в поглощении и закреплении  радионуклидов  связано с различиями в строении кристаллических решеток минералов. Кристаллическая решетка минералов построена из кремнекислородных тетраэдров (атомы кремния и кислорода) и алюмогидроксильных октаэдров (атомы алюминия, кислорода и водорода), которые располагаются слоями и формируют кристаллическую решетку или пакет, состоящий из 2-х или 3-х слоев, между которыми имеются свободные межпакетные пространства. У каолинита кристаллическая решетка образована двумя слоями, расстояние между которыми составляет 0,715 нм, у монтмориллонита – трехслойная решетка, с расстоянием между слоями от 0,94 до 2,14 нм. Известно, что чем больше слоев и чем больше межпакетное расстояние, тем глубже проникают обменные ионы вглубь решетки и тем сильнее они закрепляются в ней, поэтому сорбционная способность у минералов группы монтмориллонита выше, чем у минералов группы каолинита. Частицы глинистых минералов имеют отрицательный заряд. Возникновение отрицательного заряда связано с изоморфным замещением в тетраэдрах и октаэдрах. В минералах часть 4-х валентных ионов Si4+ тетраэдров может быть изоморфно, т.е. неэквивалентно, замещена 3-х валентными ионами Аl3+ почвенного раствора. Аналогично в октаэдрах часть 3-х валентных ионов Аl3+ может быть замещена 2-х валентными ионами Mg2+. Возникший отрицательный заряд частицы компенсируется соответствующим количеством одновалентных катионов почвенного раствора, такими как К+, Nа+, реже Ca2+, которые способны к диссоциации (к выходу из частиц) и эквивалентному обмену на любые одновалентные и двухвалентные катионы почвенного раствора, в том числе и на одновалентные ионы  радионуклидов . При этом катионы, компенсирующие отрицательный заряд, могут оставаться на поверхности коллоида или проникать в межпакетные пространства кристаллической решетки, где прочно закрепляются и не участвуют в обменных реакциях. Поэтому считают, что Сs-137 поглощается кристаллической решеткой глинистых минералов по типу изоморфного замещения калия в кристаллической решетке минералов. Участие Сs-137 в кристаллохимических реакциях с вхождением его в межпакетное пространство кристаллических решеток вторичных глинистых минералов является характерной особенностью поведения цезия-137 в почве. Большое межпакетное пространство у минералов группы монтмориллонита способствует поглощению катионов, компенсирующих отрицательный заряд, не только на внешней поверхности, но и в межпакетных пространствах, поэтому у минералов этой группы высокая поглотительная способность. У минералов группы каолинита расстояние между пакетами меньше, поэтому межпакетная связь прочнее, обменное поглощение катионов происходит только на внешней поверхности, поэтому у них менее прочная  сорбция . У гидрослюд обменные ионы Мg2+расположены в межпакетных пространствах решеток. При набухании гидрослюд (когда почва влажная) обменные ионы почвенного раствора проникают в межпакетное пространство и вступают в обменные реакции с ионами магния. При низкой влажности почвы гидрослюды теряют воду, межпакетные пространства сокращаются, ионы почвенного раствора не включаются в обменные реакции с ионами Мg2+ и не закрепляются в решетке, а остаются в почвенном растворе.
Каждая почва в естественном состоянии содержит определенное количество обменно-поглощенных катионов Са2+, Н+, Мg2+, Nа+, К+, NН4+, Аl3+, чаще преобладают К+, Са2+, Мg2+, Аl3+ и Н+, поэтому почвы могут быть кислыми или щелочными. Различные почвы имеют закономерное сочетание основных почвенных показателей. Например, черноземы характеризуются повышенным содержанием физической глины, ила, гумуса, обменных катионов, большой емкостью поглощения, преобладанием минералов монтмориллонитовой группы, а дерново-подзолистые, наоборот, отличаются невысоким содержанием питательных веществ, незначительной емкостью обмена, низким рН, малым содержанием гумуса. Поэтому более прочно  радионуклиды  закрепляются в черноземах и слабее всего в дерново-подзолистых песчаных и торфяно-болотных почвах. Установлено, что во всех типах почв Cs-137 фиксируется более прочно, чем Sr-90.
Кислотность почвы зависит от концентрации в почвенном растворе ионов Н+ и Аl3+. Ионы Н+ обладают высокой способностью к замещению поглощенных в ППК ионов химических элементов, в том числе и ионов  радионуклидов . В почвах с кислой реакцией раствора происходит неполная адсорбция  радионуклидов  ППК и возрастает их подвижность. Разные ионы оказывают разное влияние на  сорбцию   радионуклидов . По влиянию на  сорбцию  Sr-90 они располагаются в следующий убывающий ряд: Са2+ > Мg2+ > К+ > NН4+ >Nа+. Двух– и трехвалентные ионы располагаются в ряд: Аl3+ > Fе3+ > Ва2+, таким образом, чем больше в почве двух– и трехвалентных ионов, тем больше  сорбция  Sr-90. На  сорбцию  цезия-137 значительно влияют одновалентные катионы, это указывает на необратимый характер сорбции . По влиянию на  сорбцию  цезия-137 катионы располагаются в убывающий ряд: К+ > NН4+ > Мg2+ > Са2+ > Nа+. Анионы РО43-, SO42- и СО32-увеличивают  сорбцию  Sr-90, образуя с ним нерастворимые фосфаты, карбонаты и сульфаты. Эти анионы незначительно усиливают  сорбцию  цезия-137.
Чем выше насыщенность почвы основаниями, тем меньше кислотность и выше буферность почвы. Буферность – это способность почв противостоять изменению реакции почвенного раствора при появлении в нем ионов Н+ и ОН-. Высокой буферностью обладают тяжелые черноземные почвы.
Известно, что чем больше в почве органических веществ, тем выше  сорбция . Лучшими сорбентами являются фульвокислоты и гуминовые кислоты. Фульвокислоты образуют комплексы с тяжелыми металлами и  радионуклидами  анионного характера, которые хорошо растворимы. Фульвокислоты образуют также комплексы, содержащие кальций, железо и алюминий, которые находятся в почве в растворимом и нерастворимом состоянии. Гуминовые кислоты имеют высокую емкость катионного обмена (500-700 мг-экв./100г органического вещества) и обладают хелотирующей способностью, т.е. связывают тяжелые металлы и радионуклиды . Установлено, что 1г гуминовой кислоты при рН=5-6 сорбирует 34 мг свинца, 350 мг ртути, 29 мг цезия, 17 мг стронция и ряд других элементов. С гуминовыми кислотами цезий и стронций образуют гуматы и гуматные комплексы, которые плохо растворимы. Комплексы  радионуклидов  с гуминовыми кислотами в 1,5–3 раза прочнее, чем с фульвокислотами. Органическое вещество в почве образует стойкие комплексы с трансурановыми элементами, кроме этого трансурановые элементы могут образовывать с органическим веществом мобильные соединения хелатного типа. Большой запас органического вещества содержится на торфяно-болотных почвах, где примерно 20% Сs-137 соединяется с гуминовыми кислотами, а Sr-90 соединяется преимущественно с наиболее подвижными фульвокислотами.
 Сорбция   радионуклидов  в почве зависит от плотности и ботанического состава растительного покрова. На естественных травянистых фитоценозах радионуклиды  поглощены в верхнем дернинном слое. В лесных ценозах  радионуклиды  непрочно поглощаются лесной подстилкой, из которой быстро мигрируют в верхние слои минеральной почвы, где прочно фиксируются. На  сорбцию   радионуклидов  в естественных ценозах влияет интенсивность отмирания наземной массы и минерализация органического вещества, а также содержание и состав микроорганизмов, участвующих в разложении органического вещества. Микроорганизмы накапливают в своих клетках  радионуклиды , которые после их гибели вновь поступают в почву и почвенный раствор.
Прочность  сорбции   радионуклидов  возрастает в ряду почв: дерново-подзолистые супесчаные > дерново-подзолистые суглинистые > и черноземные. В этом ряду почв возрастает дисперсность частиц, содержание глинистых минералов, органического вещества и катионов кальция и калия.
Наибольшее влияние среди погодно-климатических условий оказывают сумма положительных температур и продолжительность сезона положительных температур, годовое количество осадков и их распределение по сезонам года. Чем выше температура и чем больше выпадает осадков в весенне-летний период, тем ниже  сорбция   радионуклидов .Большинство катионов, в том числе и  радионуклидов , прочнее поглощаются слабощелочными почвами аридной зоны и слабее поглощаются кислыми почвами гумидной зоны, т.е.  сорбция  зависит от природно-климатической зональности.
Таким образом, чем выше плодородие почвы, тем прочнее  сорбция   радионуклидов . 

Приложенные файлы

  • docx 14397443
    Размер файла: 28 kB Загрузок: 0

Добавить комментарий